Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The advancement of microcomb sources, which serve as a versatile and powerful platform for various time–frequency measurements, have spurred widespread interest across disciplines. Their uses span coherent optical and microwave communications, atomic clocks, high-precision LiDARs, spectrometers, and frequency synthesizers. Recent breakthroughs in fabricating optical micro-cavities, along with the excitation and control of microcombs, have broadened their applications, bridging the gap between physical exploration and practical engineering systems. These developments pave the way for pioneering approaches in both classical and quantum information sciences. In this review article, we conduct a thorough examination of the latest strategies related to microcombs, their enhancement and functionalization schemes, and cutting-edge applications that cover signal generation, data transmission, quantum analysis, and information gathering, processing and computation. Additionally, we provide in-depth evaluations of microcomb-based methodologies tailored for a variety of applications. To conclude, we consider the current state of research and suggest a prospective roadmap that could transition microcomb technology from laboratory settings to broader real-world applications.more » « less
-
Artificial monopoles have been engineered in various systems, yet there has been no systematic study of the singular vector potentials associated with the monopole field. We show that the Dirac string, the line singularity of the vector potential, can be engineered, manipulated, and made manifest in a spinor atomic condensate. We elucidate the connection among spin, orbital degrees of freedom, and the artificial gauge, and show that there exists a mapping between the vortex filament and the Dirac string. We also devise a proposal where preparing initial spin states with relevant symmetries can result in different vortex patterns, revealing an underlying correspondence between the internal spin states and the spherical vortex structures. Such a mapping also leads to a new way of constructing spherical Landau levels, and monopole harmonics. Our observation provides insights into the behavior of quantum matter possessing internal symmetries in curved spaces. Published by the American Physical Society2024more » « less
-
We report an experimental realization of a modified counterfactual communication protocol that eliminates the dominant environmental trace left by photons passing through the transmission channel. Compared to Wheeler’s criterion for inferring past particle paths, as used in prior protocols, our trace criterion provides stronger support for the claim of the counterfactuality of the communication. We verify the lack of trace left by transmitted photons via tagging the propagation arms of an interferometric device by distinct frequency-shifts and finding that the collected photons have no frequency shift which corresponds to the transmission channel. As a proof of principle, we counterfactually transfer a quick response code image with sufficient fidelity to be scanned with a cell phone.more » « less
-
Abstract Self-testing allows one to characterise quantum systems under minimal assumptions. However, existing schemes rely on quantum nonlocality and cannot be applied to systems that are not entangled. Here, we introduce a robust method that achieves self-testing of individual systems by taking advantage of contextuality. The scheme is based on the simplest contextuality witness for the simplest contextual quantum system—the Klyachko-Can-Binicioğlu-Shumovsky inequality for the qutrit. We establish a lower bound on the fidelity of the state and the measurements as a function of the value of the witness under a pragmatic assumption on the measurements. We apply the method in an experiment on a single trapped40Ca+using randomly chosen measurements and perfect detection efficiency. Using the observed statistics, we obtain an experimental demonstration of self-testing of a single quantum system.more » « less
-
null (Ed.)Vibrational modes in mechanical resonators provide a promising candidate to interface and manipulate classical and quantum information. The observation of coherent dynamics between distant mechanical resonators can be a key step toward scalable phonon-based applications. Here we report tunable coherent phonon dynamics with an architecture comprising three graphene mechanical resonators coupled in series, where all resonators can be manipulated by electrical signals on control gates. We demonstrate coherent Rabi oscillations between spatially separated resonators indirectly coupled via an intermediate resonator serving as a phonon cavity. The Rabi frequency fits well with the microwave burst power on the control gate. We also observe Ramsey interference, where the oscillation frequency corresponds to the indirect coupling strength between these resonators. Such coherent processes indicate that information encoded in vibrational modes can be transferred and stored between spatially separated resonators, which can open the venue of on-demand phonon-based information processing.more » « less
An official website of the United States government
